GraphSLAM

Problem Definition

Given \(x_0\), \(u_{1:t}\), \(z_{1:t}\), \(c_{1:t}\), \(R_{1:t}\), \(Q_{1:t}\),

  • \(x_0\): initial pose
  • \(u_{1:t}\): prediction input
  • \(R_{1:t}\): prediction uncertainty
  • \(z_{1:t}\): measurements
  • \(Q_{1:t}\): measurement uncertainty

Full SLAM posterior of the trajectory:

\[\begin{aligned} & p(y_{0:t}|z_{1:t}, u_{1:t}, c_{1:t}) \\\\ & y_{0:t} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_t \\ m \end{bmatrix}, \quad y_t = \begin{bmatrix} x_0 \\ m \end{bmatrix} \\\\ & \mu_{0:t} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_t \\ m \end{bmatrix}, \quad M_t = \begin{bmatrix} x_0 \\ m \end{bmatrix} \end{aligned}\]

Expanding the posterior

\[\begin{aligned} & f(y_{0:t}) = p(y_{0:t}|z_{1:t}, u_{1:t}, c_{1:t}) \\ & = p(y_{0:t}|z_{1:t-1}, z_t, u_{1:t}, c_{1:t}) \\ & = \eta \ p(z_t|y_{0:t}, z_{1:t-1}, u_{1:t}, c_{1:t})p(y_{0:t}|z_{1:t-1}, u_{1:t}, c_{1:t}) \\ & = \eta \ p(z_t|y_{0:t}, z_{1:t-1}, u_{1:t}, c_{1:t})p(y_{0:t}|z_{1:t-1}, u_{1:t}, c_{1:t}) \\ & = \eta \ p(z_t|y_t, c_t)p(x_t, y_{0:t-1}|z_{1:t-1}, u_{1:t}, c_{1:t}) \\ & \quad\quad\quad (p(x, y|z)=p(x|y, z)p(y|z)) \\ & = \eta \ p(z_t|y_t, c_t)p(x_t|y_{0:t-1}, z_{1:t-1}, u_{1:t}, c_{1:t})p(y_{0:t-1}| z_{1:t-1}, u_{1:t}, c_{1:t}) \\ & = \eta \ p(z_t|y_t, c_t)p(x_t|x_{t-1}, u_t)p(y_{0:t-1}| z_{1:t-1}, u_{1:t}, c_{1:t}) \\ & \quad\quad\quad p(y_{0:t-1}| z_{1:t-1}, u_{1:t}, c_{1:t})=f(y_{0:t-1}) \\ & = \eta \ p(y_0) \prod_{t} \begin{bmatrix} p(x_t|x_{t-1}, u_t) p(z_t|y_t, c_t) \end{bmatrix} \\ & = \eta \ p(x_0)p(m) \prod_{t} \begin{bmatrix} p(x_t|x_{t-1}, u_t) p(z_t|y_t, c_t) \end{bmatrix} \\ & = \eta' \ p(x_0) \prod_{t} \begin{bmatrix} p(x_t|x_{t-1}, u_t) p(z_t|y_t, c_t) \end{bmatrix} \text{(no prior for map)} \\ \end{aligned}\]

The goal of GraphSLAM: \(\begin{aligned} & \widehat{y}_{0:t} = arg \max_{y_{0:t}} p(y_{0:t}|z_{1:t-1}, z_t, u_{1:t}, c_{1:t}) \\ & = arg \min_{y_{0:t}} -\log p(y_{0:t}|z_{1:t-1}, z_t, u_{1:t}, c_{1:t}) \\ & = arg \min_{y_{0:t}} -\log \eta' - \log p(x_0) - \sum_t \log p(x_t|x_{t-1}, u_t) - \sum_t \sum_i \log p(z_t^i|y_t, c_t^i) \\ & = arg \min_{y_{0:t}} J_{Graph} \end{aligned} \\\)

The reason to apply log to the posterior

  • As log is monotonically increasing function, \(\widehat{x} = arg \min_{x} f(x) = arg \min_{x} \log f(x)\)
  • Since motion and measurement models are formulated by Gaussian distribution (exponential function), applying log makes the equation simpler

Calculate the objective function

\[J_{Graph} = {1 \over 2} \begin{Bmatrix} x_0^T \Sigma x_0 + \sum_t \begin{bmatrix} x_t - g(x_{t-1}, u_t) \end{bmatrix}^T R_t^{-1} \begin{bmatrix} x_t - g(x_{t-1}, u_t) \end{bmatrix} \\ + \sum_t \sum_i \begin{bmatrix} z_t^i - h(y_t, c_t^i) \end{bmatrix}^T Q_t^{-1} \begin{bmatrix} z_t^i - h(y_t, c_t^i) \end{bmatrix} + \text{const.} \\ \end{Bmatrix}\]

Solving \(\widehat{y}_{0:t}\) is a nonlinear least-square problem (\(g()\), \(h()\) functions are nonlinear over \(y_{0:t}\))

Approximate nonlinear functions to the first order Talyor expansion

\[\begin{align} & g(x_{t-1}, u_t) \approx g(\mu_{t-1}, u_t) + G_t (x_{t-1} - \mu_{t-1}) \\ & G_t = {\partial \over \partial x_{t-1}} g(x_{t-1}, u_t) \mid_{x_{t-1} = \mu_{t-1}} = {\partial \over \partial \mu_{t-1}} g(\mu_{t-1}, u_t) \\ & h(y_t, c_t^i) \approx h(M_t, c_t^i) + H_t^i (y_t - M_t) \\ & H_t^i = {\partial \over \partial y_t} h(y_t, c_t^i) \mid_{y_t = M_t} = {\partial \over \partial M_t} h(M_t, c_t^i) \end{align}\] \[J_{Graph} = {1 \over 2} \left\{ x_0^T \Sigma x_0 + \sum_t \begin{bmatrix} x_t - g(\mu_{t-1}, u_t) - G_t (x_{t-1} - \mu_{t-1}) \end{bmatrix}^T R_t^{-1} \\ \begin{bmatrix} x_t - g(\mu_{t-1}, u_t) - G_t (x_{t-1} - \mu_{t-1}) \end{bmatrix} \\ + \sum_t \sum_i \begin{bmatrix} z_t^i - h(M_t, c_t^i) - H_t^i (y_t - M_t) \end{bmatrix}^T Q_t^{-1} \\ \begin{bmatrix} z_t^i - h(M_t, c_t^i) - H_t^i (y_t - M_t) \end{bmatrix} + \text{const.} \right\} \\\] \[J_{Graph} = {1 \over 2} \left\{ x_0^T \Sigma x_0 + \sum_t \left[ (x_t - G_t x_{t-1})^T R_t^{-1} (x_t - G_t x_{t-1}) \\ - 2(x_t - G_t x_{t-1})^T R_t^{-1} (g(\mu_{t-1}, u_t) - G_t \mu_{t-1}) + \text{const.} \right] \\ + \sum_t \sum_i \left[ (-H_t^i y_t)^T Q_t^{-1} (-H_t^i y_t) \\ + (-H_t^i y_t)^T Q_t^{-1} (z_t^i - h(M_t, c_t^i)) + H_t M_t) + \text{const.} \right] \right\}\] \[J_{Graph} = {1 \over 2} x_0^T \Sigma x_0 + {1 \over 2} \sum_t \begin{bmatrix} x_{t-1}^T & x_t^T \end{bmatrix} \begin{bmatrix} -G_t^T \\ I \end{bmatrix} R_t^{-1} \begin{bmatrix} -G_t & I \end{bmatrix} \begin{bmatrix} x_{t-1} \\ x_t \end{bmatrix} \\ - \sum_t \begin{bmatrix} x_{t-1}^T & x_t^T \end{bmatrix} \begin{bmatrix} -G_t^T \\ I \end{bmatrix} R_t^{-1} \begin{bmatrix} g(\mu_{t-1}, u_t) - G_t \mu_{t-1} \end{bmatrix} \\ + {1 \over 2} \sum_t \sum_i y_t^T {H_t^i}^T Q_t^{-1} H_t^i y_t \\ - \sum_t \sum_i y_t^T {H_t^i}^T Q_t^{-1} (z_t^i - h(M_t, c_t^i)) + H_t M_t) + \text{const.}\]

In vector-matrix form, the linearized equation becomes \(J_{Graph} = {1 \over 2} y_{0:t}^T \Omega y_{0:t} - \xi^T y_{0:t} + \text{const.}\)

Nonlinear Optimization

  1. Set an initial guess \(\mu_{0:t}\)
  2. Compute \(\Omega\) and \(\xi\) in \(J_{Graph}\) with \(\mu_{0:t}\)
  3. Update \(\mu_{0:t} \leftarrow \Omega^{-1}\xi\)
  4. Iterate 2~3 until convergence

Transformation Between Point Clouds

Given two point clouds \(\mathbf{p}=\left\{ p_i \right\}_{i=1:N}\), \(\mathbf{q}=\left\{ q_i \right\}_{i=1:N}\) where \(p_i\) corresponds to \(q_i\) in a different coordinate system.

The goal is to find \(R, t\) which minimizes \(\sum_i \begin{Vmatrix} Rp_i+t - q_i \end{Vmatrix}\)

Algorithm

  1. Translate point clouds for their center to be at the origin

    \[\mathbf{p'} = \left\{p_i - \mathbf{\bar{p}}\right\}_{i=1:N}, \quad \mathbf{q'} = \left\{q_i - \mathbf{\bar{q}}\right\}_{i=1:N}\]
  2. Create rotation motion matrix

    \[\mathbf{m} = \left\{p_i' - q_i'\right\}_{i=1:N}, \quad M=\begin{bmatrix} m_0 \\ m_1 \\ ... \\m_N \end{bmatrix}\]
  3. SVD on \(M\) to find null vector of \(M\)

    \(M = U \Sigma V^T\): (NxN) x (Nx3) x (3x3)

  4. The last column of \(V\) corresponding to the least singular value \(\sigma_3\) is the rotational axis

  5. Compute rotation angle

    \[cos \theta = {1 \over N} \sum_i {p \cdot q \over \begin{vmatrix} p \end{vmatrix} \begin{vmatrix} q \end{vmatrix}}\]
  6. Compute rotation matrix

    1. angle, axis -> quaternion -> rotation matrix
    2. angle, axis -> twist -> rotation matrix (Rodrigues’ formula)
  7. Compute translation vector

    \[t = {1 \over N} \sum_i \left\{ q_i - Rp_i \right\}\]